層状構造物の弾塑性振動における 降伏層せん断力比-塑性歪エネルギー比関係の 推定精度向上について

大垣 聡

第一工科大学 工学部 建築デザイン学科 〒899-4395 鹿児島県霧島市国分中央1丁目10-2

In elasto-plastic vibration of layered structures Yield shear force ratio - Plastic strain energy ratio relationship Improvement of estimation accuracy

Satoshi Ogaki

Department of Architecture Design, Daiichi Institute of Technology

(1-10-2 Kokubuchuou, Kirishima City, Kagoshima, 〒899-4395)

Abstract: Plastic strain energy in the seismic response of structures is an important quantity for measuring damage. The plastic strain energy and the total energy input are quantities that are uniquely determined once the seismic motion and the characteristics of the structure are determined, but their calculations must be based on elasto-plastic time history response analysis. However, evaluation of the damage caused by a large number of seismic motions is complicated, and design tends to fall into trial and error. Therefore, a simple estimation method is desired. Estimation methods using elastic response spectra have been proposed, but their accuracy is difficult. In this paper, in order to contribute to the improvement of the accuracy of the estimation method, various theoretical solutions and approximate theoretical solutions of elasto-plastic responses are organized.

Key words: Plastic strain energy ratio, Yield shear force ratio, SDOF Model, Elasto-Plastic stationary response, Elasto-Plastic free vibration, Constant ground acceleration

1. 序

構造物の地震時の応答における塑性歪エネルギー は、損傷を測る上で重要な量である。塑性歪エネル ギー(E_p),総エネルギー入力(E_a)は地震動と構造物 (系)の特性が定まれば一意に定まる量であるが、 その算定は弾塑性時刻歴応答解析に拠らざるを得な い。しかし、数多くの地震動に対する損傷を評価す る場合作業は煩雑であり、設計は試行錯誤に陥りや すい。澤田¹⁾⁻³は $E_p & E_a$ で基準化した値(本稿では 塑性歪エネルギー比($E_p/E_a=R_{Ep}$)と定義)と弾性応答 時最大層せん断力(Q_e)に対する降伏層せん断力(Q_y)の 比(本稿では降伏層せん断力比 $\alpha(=Q_y/Q_e)$ と定義)が 単純な関係(以下, α-R_b関係)を持つことを多くの解 析結果を基に確認している。

しかし、これらの提案式は地震動と系の特性によっては解析値との乖離が大きい。設計において特定の系に地震動を入力して損傷を評価する場合、より高い精度が求められる。

フーリエ級数展開を用いた近似理論解(以下,近 似理論解)で1質点系の弾塑性定常応答最大値が精 度良く求められることが知られているが⁴、完全弾 塑性型の復元力特性を持つ1質点系の定常応答にお ける α-R_{Ep}関係についても同様に近似理論解を用い て高い精度で評価できることが確認されている⁵。 また、同じ系の自由振動と一定加速度地動に対する 応答については、理論解を用いて *a*-*R*_{*bp*} 関係が表現 できる^{0,7})。これらの要素知見を基に、地震動と系 が定められたときの *a*-*R*_{*bp*} 関係の推定精度向上を目 指すに当たり、整理を行った上でその方針をここで 纏める。

2. 降伏層せん断力比と塑性歪エネルギー比の関係

Housnerは塑性歪エネルギー E_p が式(2.1)で表される ものと仮定した^{8,9}。

$$E_p/\hat{E}_{k,e} = 1 - \alpha^2 \tag{2.1}$$

$$\hat{E}_{k,e} = \frac{1}{2}mV_e^2 = \frac{1}{2}Q_e X_e$$
(2.2)

mは質量、 V_e は弾性系の速度応答最大値である。 E_e は 弾性歪エネルギーの最大値であり、降伏層せん断力 比 $\alpha=Q_v/Q_e$ を用いて下式で表される。

$$E_{es} = \frac{1}{2} \frac{Q_y^2}{k} = \frac{1}{2} \frac{\alpha^2 Q_e^2}{k} = \alpha^2 \hat{E}_{k,e}$$
(2.3)

ここで、 Q_y 、 Q_e 、k、 X_e はそれぞれ、降伏層せん断力、 弾性応答層せん断力、弾性剛性、弾性応答最大変位で ある。式(2.1)~(2.3)より、 $E_p/\hat{E}_{k,e}$ は以下となる。

$$E_p / \hat{E}_{ke} = 1 - \alpha^2 \tag{2.4}$$

降伏層せん断力係数比aは応答値に影響されない値 であるため、式(2.4)より E_p は E_es に比例することが解 る。つまり式(2.4)は、系の弾性応答(固有周期と減衰) が定まれば、 E_p はaに応じて定まることを表しており、 E_p の推定式と捉えることもできる。 E_p は「 $\hat{E}_{k,e}$ 」では なく「 E_a 」に対応すると考え、式(2.4)左辺の「 $\hat{E}_{k,e}$ 」を 「 E_a 」に置き換えて、下式とする。

$$E_p / E_a = 1 - \alpha^2 \tag{2.5}$$

また,変位一定則においては,塑性歪エネルギー E_p は式(2.6)で表される。

$$E_p = Q_y (X_e - X_y) = Q_e X_e \alpha (1 - \alpha)$$
(2.6)

式(2.2), (2.6)より,以下となる。

$$E_{n}/\hat{E}_{k,e} = 2\alpha(1-\alpha) \tag{2.7}$$

式(2.4)左辺の「 $\hat{E}_{k,e}$ 」を「 E_a 」に置き換えて、下式とする。

 $E_p / E_a = 2\alpha (1 - \alpha) \tag{2.8}$

3. 1 質点系の定常応答

入力地震動を正弦波とし、その円振動数を p,系

図1 履歴曲線

の固有円振動数に対するpの比を振動数比 γ とする。また減衰定数(h)の2倍を λ で表す。弾性変位応答倍率(r_e),完全弾塑性型の塑性変位応答倍率(r_p)はそれぞれ下式で表される。

$$r_{e} = \frac{\gamma^{2}}{\sqrt{(1-\gamma^{2})^{2} + (\lambda\gamma)^{2}}}$$

$$r_{p} = \frac{\gamma^{2}}{\sqrt{(A_{1}-\gamma^{2})^{2} + (B_{1}-\lambda\gamma)^{2}}}$$

$$z z \mathcal{C}, A_{1}, B_{1} いい下 \mathcal{C} \mathcal{B} \mathcal{Z}^{(4)},$$
(3.1)

$$A_{1} = \frac{1}{\pi} \left(pt_{y} - \frac{1}{2} \sin 2pt_{y} \right)$$

$$B_{1} = -\frac{4}{\pi} \frac{1}{\mu} \left(1 - \frac{1}{\mu} \right)$$
(3.2)

 t_y は定常応答半周期における降伏時刻を表す。 pt_y は、以下である。

$$pt_y = \cos^{-1}\left(1 - \frac{2}{\mu}\right)$$
 (3.3)

 μ は塑性率である。なお本稿では、常に $\mu \ge 1.0$ である。 $\alpha \mu = r_p/r_e(\boxtimes 1)$ であるため、 $\alpha \ge \mu$ の関係は下式となる。 α の分母となる Q_e は、ここでは定常応答理論解によるものである。

$$\alpha = \frac{1}{\mu} \sqrt{\frac{(1-\gamma^2)^2 + \lambda^2 \gamma^2}{(A_1 - \gamma^2)^2 + (B_1 - \lambda \gamma)^2}}$$
(3.4)

基準エネルギーE0を、下式で定義する。

$$E_0 = \frac{1}{2} m Y_g^2 p^2 \tag{3.5}$$

mは系の質量, Y_g は地動変位振幅を表す。近似理論 解では弾塑性応答も三角関数で表されるものと仮定 しているため、1 周期分の減衰による消費エネルギ $-(以下,減衰エネルギ-(E_d))$ は r_p を用いて下式 で表される。

$$E_d = 2\pi r_p^2 \frac{\lambda}{\gamma} E_0 \tag{3.6}$$

図2 定常応答における降伏層せん断力比(α)と塑性歪エネルギー比(R_{Ep})の関係

完全弾塑性復元力特性では、1 周期分の *E_p* は以下となる。

$$E_{p} = 8r_{p}^{2} \frac{\mu - 1}{\mu^{2} \gamma^{2}} E_{0}$$
(3.7)

地震動終了時刻が無く,運動エネルギーもしくは弾 性歪エネルギーが無視できない大きさを持つ定常応 答を扱うため, *E_aを E_dと E_pの*和に置き換えて塑性 歪エネルギー比を改めて定義する

 $(R_{Ep}=E_p/E_a \rightarrow R_{Ep}=E_p/(E_d+E_p))$ 。式(3.6), (3.7)から, 塑性歪エネルギー比 R_{Ep} は以下となる。

$$R_{E_p} = \frac{E_p}{E_d + E_p} = \frac{4(\mu - 1)}{\pi \lambda \mu^2 \gamma + 4(\mu - 1)}$$
(3.8)

式(3.4), (3.8)から, a と R_{Ep}が関係付けられる。

数値解析結果と上記近似理論解との比較により検 証を行う。解析モデルは1質点, Bi-linear 型復元力 特性とし,降伏後の第二勾配の弾性剛性に対する比 は 0.001 とする。入力波は周期 1.0 秒の正弦波,解 析時間間隔は 0.002 秒とした。振動数比(γ)は 0.4, 1.0, 1.5, 3.0 の 4 ケース,減衰定数 (h) は 0.02, 0.05, 0.1 の 3 ケースとする。数値積分には Wilson 法を用いた。また、過渡応答が十分減衰する 40~ 50 秒を応答値の抽出時間とし、定常振動 1 周期平均 値を求めた。図 2 に α - R_{E_P} 関係を、近似理論解と数 値解析値の対比で示す。いずれも広範囲の α におい てよい精度で対応している。

4.1質点減衰弾塑性系の自由振動理論解

質量m,減衰係数c,弾性剛性k,降伏層せん断力 q_y の1質点完全弾塑性系に、初速度 v_{0e} を与える(初期変位は0)。本稿では $q_y>0$, $v_{0e}>0$ とする。系の減

衰定数をh(0 < h < 1),弾性時の固有円振動数を ω とする。このとき、系は先ず弾性振動を始め、降伏点に達した後塑性域に入り、速度が0となると再び弾性振動を始める(図 1)。塑性域の運動方程式は以下である。

$$m\ddot{x} + c\dot{x} + q_y = 0$$

$$\ddot{x} + 2h\omega\dot{x} + a_y = 0$$
(4.1)

x は応答変位(x, x はそれぞれ速度, 加速度),

 $a_y=q_y/m$ である。塑性応答開始時刻(=弾性応答終了時刻)における初期の変位,速度をそれぞれ d_0 , v_0 とする。初期加速度 a_0 は運動方程式(4.1)第2式より $a_0=-2hov_0-a_y$ となる。塑性域応答は式(4.1)を解くことで下式のように求められる。

$$x = \frac{a_0}{4h^2\omega^2} e^{-2h\omega \cdot t} - \frac{a_y}{2h\omega} t - \frac{a_0}{4h^2\omega^2} + d_0$$

$$\dot{x} = -\frac{a_0}{2h\omega} e^{-2h\omega \cdot t} - \frac{a_y}{2h\omega}$$

$$\ddot{x} = a_0 e^{-2h\omega \cdot t}$$

(4.2)

時刻 t は塑性域を対象とした時刻であり、塑性応答 開始時刻を 0 とする。時刻 t における運動エネルギ $-(E_{\mu})$,減衰による消費エネルギー(以下減衰エネ ルギー、 $E_{d\nu}$)、塑性歪エネルギー(E_p)、総エネルギー 入力(E_a)は運動方程式(4.1)第 1 式の各項に $\dot{x}dt$ をかけ て積分することで求められ、以下となる。

$$\begin{split} E_{kp} &= -\frac{m^3}{2c^2} a_0^2 \left(1 - e^{-4h\omega \cdot t}\right) - \frac{m^2 q_y}{c^2} a_0 \left(1 - e^{-2h\omega \cdot t}\right) \\ E_{dp} &= \frac{m^3}{2c^2} a_0^2 \left(1 - e^{-4h\omega \cdot t}\right) + \frac{2m^2 q_y}{c^2} a_0 \left(1 - e^{-2h\omega \cdot t}\right) + \frac{q_y^2}{c} t \\ E_p &= -\frac{m^2 q_y}{c^2} a_0 \left(1 - e^{-2h\omega \cdot t}\right) - \frac{q_y^2}{c} t \end{split}$$

(4.3)

 $\dot{x} = 0$ となる時刻を t_1 とする。 t_1 は式(4.2)第2式から 以下のように求められる。

$$t_1 = \frac{1}{2h\omega} \ln \left(-\frac{a_0}{a_y} \right) \tag{4.4}$$

式(4.4)を式(4.3)第3式に代入し、時刻れにおける塑 性歪エネルギーを求めると以下となる。

$$E_{p} = m \left(v_{y} v_{0} + v_{y}^{2} \ln \frac{v_{y}}{v_{0} + v_{y}} \right)$$
(4.5)

ここで、 $v_y=q_y/c$ である。また、総エネルギー入力は下式の通りである。

$$E_a = \frac{1}{2} m v_{0e}^{\ 2} \tag{4.6}$$

 $R_{ve}=v_{0e}/v_{y}$, $r_{v}=v_{0}/v_{0e}$ とすると、式(4.5)、(4.6)より塑性 歪エネルギー比 R_{Ep} は下式で表される。

$$R_{Ep} = \frac{2}{R_{ve}^{2}} \left(r_{v} R_{ve} + \ln \frac{1}{r_{v} R_{ve} + 1} \right)$$
(4.7)

上記完全弾塑性系と同じ特性を持つ1質点弾性系 に初速度 voe(初期変位は 0)を与えた場合の最大変位 deは、弾性系自由振動解から以下のように求められ る。

$$d_e = D_e e^{-\frac{h}{\sqrt{1-h^2}} \tan^{-1} \frac{\sqrt{1-h^2}}{h}}$$
(4.8)

 $D_{e=V_{0e}/\omega}$ は非減衰弾性系自由振動の最大変位である。完全 弾塑性系の降伏点における変位 $d_{y}=q_{y}/k=2h_{y}/\omega$ を考慮して, 降伏層せん断力比 $\alpha=d_{y}/d_{e}$ を求めると以下となる。

$$\alpha = \frac{1}{R_{ve}} 2h \cdot e^{\frac{h}{\sqrt{1-h^2}} \tan^{-1} \frac{\sqrt{1-h^2}}{h}}$$
(4.9)

式(4.7)と式(4.9)より α と R_{Ep} が関係付けられる。 α が 定められたとき,一つのhに対して R_{ve} が定まる。 また, α が定まれば $\omega t_{y}(t_{y}$ は降伏時刻)が定まるた め,弾性自由振動解から下式で表される r_{y} は定ま る。

$$r_{v} = \frac{v_{0}}{v_{0e}} = \frac{1}{\sqrt{1 - h^{2}}} e^{-h\omega t_{y}} \sin\left(\sqrt{1 - h^{2}}\omega t_{y} + \varphi\right)$$
(4.10)

ここで、 $\cos\varphi=-h$ 、 $\sin\varphi=\sqrt{1-h^2}$ である。つまり式 (4.7)より、 α - R_{Ep} 関係は ω 、 v_{0e} に無関係であり、hの みに影響を受けることがわかる。 α - R_{Ep} 関係を図3に 示す。

非減衰系の理論解

塑性域で消費される塑性歪エネルギー*Ep*は,非減 衰系であるが故に塑性応答開始時刻の運動エネルギ ーに等しい。従って下式で表される。

$$E_{p} = \frac{1}{2}mv_{0}^{2}$$
(4.11)

総エネルギー入力は減衰系と同様に式(4.6)で表されるため、 $R_{Eo}=E_p/E_a$ は下式の通りとなる。

$$R_{Ep} = \left(\frac{v_0}{v_{0e}}\right)^2 \tag{4.12}$$

また,初速度 v_{0e}を与えた(初期変位は 0)非減衰弾性 系の変位,速度は下式で表される。

$$\begin{array}{l} x = d_e \sin \omega t \\ \dot{x} = v_{0e} \cos \omega t \end{array} \tag{4.13}$$

式(4.13)から下式が成り立つことがわかる。

$$\left(\frac{x}{d_e}\right)^2 + \left(\frac{\dot{x}}{v_{0e}}\right)^2 = 1 \tag{4.14}$$

大垣:層状構造物の弾塑性振動における降伏層せん断力比 -塑性歪エネルギー比関係の推定精度向上について

式(4.14)は塑性応答開始時刻においても成立するから ($x=d_y$, $\dot{x} = v_0$), 式(4.12)と α の定義式($\alpha=d_y/d_e$)を代 入すると、非減衰系の塑性域における α - R_{E_P} 関係を 表す下式が得られる。

 $R_{Ep} = 1 - \alpha^2 \tag{4.15}$

式(4.15)が非減衰系の理論解であり, Housner 式(エネ ルギーー定則)と一致する^{§2,8),9),10)}。これと澤田式(平 均)²⁾,変位一定則^{§2,10)}を図3中に併せて描く。

5. 一定加速度を受ける1質点減衰系の塑性域にお ける理論解

質量 m,減衰係数 c,弾性剛性 k,降伏層せん断力 q_y の1 質点完全弾塑性系に、一定の地動加速度 a_g を与える。本稿では $q_y>0$, $a_g<0$ とする。系の減衰定数 $e h(0 \le h<1)$,弾性時の固有円振動数を ω とする。 このとき、系は先ず弾性振動を始め、降伏点に達した後塑性域に入り、速度が 0 となると再び弾性振動 を始める。但し、後述するように、加速度の大きさ が系の特性から定まる値に対して一定値以上ならば 弾性振動に復帰することはない(図 1)。弾性域の運動 方程式は以下である。

 $\begin{array}{l} m\ddot{x}+c\dot{x}+kx=-ma_{g}\\ \ddot{x}+2h\omega\dot{x}+\omega^{2}x=-a_{g} \end{array} \tag{5.1}$

x は応答変位(x, x はそれぞれ速度,加速度)であ る。初期変位,初速度は0とする。この解は以下で ある。

$$x = \frac{1}{\sqrt{1-h^2}} |d_g| e^{-h\omega t} \sin\left(\sqrt{1-h^2}\omega t + \psi_1\right) - d_g$$

$$\dot{x} = -\frac{1}{\sqrt{1-h^2}} \omega |d_g| e^{-h\omega t} \sin\left(\sqrt{1-h^2}\omega t + \psi_1 + \psi_2\right)$$

$$\ddot{x} = \frac{1}{\sqrt{1-h^2}} \omega^2 |d_g| e^{-h\omega t} \sin\left(\sqrt{1-h^2}\omega t + \psi_1 + 2\psi_2\right)$$

ここで、 $d_g=a_g/\omega^2$, $\cos\psi_1=h\cdot \operatorname{sgn}(a_g)$, $\sin\psi_1=\sqrt{1-h^2}\cdot \operatorname{sgn}(a_g)$, $\cos\psi_2=h$, $\sin\psi_2=-\sqrt{1-h^2}$ である。

(5.2)

一方, 塑性域の運動方程式は以下である。
$$m\ddot{x}+c\dot{x}+q_y=-ma_g$$

 $\ddot{x}+2h\omega\dot{x}+a_y=-a_g$ (5.3)

塑性応答開始時刻(=弾性応答終了時刻)における 初期の変位,速度をそれぞれ d_0 , v_0 とする。また, $a_0=2h\omega v_0$, $d_y=q_y/k$, $v_y=q_y/c$, $a_y=q_y/m$, $v_g=a_g/(2h\omega)$, $v_a=v_0+v_y+v_g$, $v_{yg}=v_{y+}v_g$ とする。塑性域応答は式(5.3)を 解くことで下式のように求められる。

$$x = \frac{v_a}{2h\omega} \left(1 - e^{-2h\omega \cdot t} \right) - v_{yg} t + d_0$$

$$\dot{x} = v_a e^{-2h\omega \cdot t} - v_{yg}$$

$$\ddot{x} = -2h\omega v_a e^{-2h\omega \cdot t}$$
(5.4)

時刻 t は塑性域を対象とした時刻であり、塑性応答 開始時刻を0とする。時刻 t₁における塑性歪エネル ギーは式(5.3)第1式左辺第3項にxを掛けた時間積 分であり、以下となる。

$$E_p = q_y \int_0^{t_1} \dot{x} dt = q_y \Delta x = m a_y \Delta x$$
(5.5)

ここで、*Δx*は時刻 h後の変位増分である。また、総 エネルギー入力は式(5.3)第1式右辺の同様の積分で あり、下式の通りとなる。

$$E_a = -ma_g \int_0^{t_1} \dot{x} dt = -ma_g \Delta x \tag{5.6}$$

 $R_{ag}=a_g/a_y$ とすると、式(5.5)、(5.6)より塑性歪エネル ギー比 R_{Ep} は下式で表される。

$$R_{Ep} = -\frac{a_y}{a_g} = -\frac{1}{R_{ag}}$$
(5.7)

但し式(5.5)~(5.7)は、塑性応答が継続していること を前提としている。塑性域の速度が減速し「0」と なる場合、その後の応答は弾性応答に復帰するため E_p は「0」である。つまり系の速度増分、即ち相対 加速度(式(5.4)第3式)が負となる場合、弾性応答 に復帰する。復帰後の弾性応答を含めると、地震動 継続時間中のエネルギー収支は同列には扱えないた め、本稿では弾性復帰しない応答、即ち式(5.8)が成 立する塑性応答を対象とする。

$$v_a = v_0 + v_y + v_g \le 0 \tag{5.8}$$

式(5.2)で表される弾性応答の降伏点における速度で ある wは, w と系の特性を表す変数から一意に定ま る。

上記完全弾塑性系と同じ特性を持つ1質点弾性系 が一定加速度 *ag*の地動(初期変位,初速度は0)を受 けた場合の最大変位 *de*は,弾性系振動解(式(5.2)) から以下のように求められる。

$$d_e = -d_g \cdot \left(1 + \mathrm{e}^{-\frac{h}{\sqrt{1-h^2}}\pi}\right) \tag{5.9}$$

完全弾塑性系の降伏点における変位は $d_y=q_y/k=a_y/\omega^2$ と表されるため、降伏層せん断力比 $\alpha=d_y/d_e$ を求めると以下となる。

$$\alpha = -\frac{1}{R_{ag}} \left(\frac{1}{1 + e^{-\frac{h}{\sqrt{1 - h^2}}\pi}} \right)$$
(5.10)

式(5.7), (5.10)より α と R_{Ep} は以下の関係にあることが解る。

$$R_{Ep} = \left(1 + \mathrm{e}^{-\frac{h}{\sqrt{1-h^2}}\pi}\right) \cdot \alpha \tag{5.11}$$

 α - R_{Ep} は比例関係にあり、hのみに影響を受ける。 α - R_{Ep} 関係を図4に示す。式(5.8)からわかるように、 v_y (q_y , a)が大きくなると弾性応答に復帰する。計算によると、 $h=0.01\sim0.20$ 、固有周期 $T=0.8\sim3.0$ secの範囲では、 $a \leq 0.45\sim0.5$ 程度で式(5.8)を満足する。ここでは、aは $R_{Ep} \leq 1.0$ となる範囲で描く。

6. 考察

近似理論解定常振動の *a-R_G* 関係の形状は、共振 状態及びその近辺の振動数比(y) において広い降伏 層せん断力比(a)の範囲で比例関係に近い形状を 示している。一方、振動数比が大きくなると、緩や かな凸形状を示している。振動数比が大きくなる、緩や かな凸形状を示している。振動数比が大きくなる、 即ち系の固有周期が入力地動の卓越周期に比べて長 くなると、式(2.5)で表される関係の形状に近い緩や かな凸形に近づくことは、エネルギー応答の経験則 を考える上で示唆的である。つまり、構造物が長周 期になると変位一定則に従うという経験則がある が、これを理論的に裏付けるものの一つと考えられ る。 自由振動の α - R_{Ep} 関係理論解からは、減衰定数を 0(非減衰)とすることで Housner 式(エネルギーー 定則)が導くことができる。逆に、この理論式は減衰 振動におけるエネルギーー定則を表したものと解す ることができる。

7. 結

最も単純な1質点弾塑性系の定常応答、自由振動、一定加速度を受ける状態の3つの状態の降伏層 せん断力比と塑性エネルギー比関係について、理論 解および近似理論解を整理した。

降伏層せん断力比-塑性歪エネルギー比関係に は、応答が自由振動主体、定常振動主体の何れであ るか、それらの割合がどの程度であるかが大きく影 響を与えていると考えられる。従って、適切な指標 を導入する等の方法でこの割合を推定し、理論解・ 近似理論解を考慮することが推定精度向上につなが ると考えられる。今後、この自由振動・定常振動割 合について調べ、降伏層せん断力比-塑性歪エネル ギー比関係の推定精度向上方法を探る。

参考文献

- 澤田樹一郎,松尾彰:一質点系構造物の設計用加速度スペクトル からの累積塑性エネルギー入力予測に関する研究,日本建築学会構 造工学論文集,Vol.51B, pp.181-187, 2005.3
- 2)澤田樹一郎:設計用加速度スペクトルからの多質点系構造物の累 積塑性エネルギー入力予測に関する研究,日本建築学会構造系論文 集,第621号,pp.149-154,2007.11
- 3)澤田樹一郎:広範囲の減衰定数に対応した一質点系の地震時累積 塑性エネルギー予測に関する研究,日本建築学会構造系論文集,第 718号,pp.1881-1889,2015.12
- 4) 多治見宏:建築振動学、コロナ社、2005.5
- 5) 大垣聡:1質点系の弾塑性定常応答における降伏層せん断力比と 塑性歪エネルギー比の関係、日本建築学会大会学術講演梗概集, 2016.8
- 6) 大垣聡:1質点系の弾塑性自由振動における降伏層せん断力比と 塑性歪エネルギー比の関係、日本建築学会大会学術講演梗概集、 2017.8
- 7)大垣聡:一定地動加速度による1質点系弾塑性振動の降伏層せん 断力比と塑性歪エネルギー比の関係、日本建築学会大会学術講演梗 概集,2018.9
- Housner,G.W.:Limit design of structures to resist earth-quakes, Proc. of 1st WCEE, 1956
- Housner,G.W.:Behavior of structures during earthquakes, ASCE, EM4, 1959.10
- 10) 大垣聡,高田毅士:地震動の方向性を考慮することによる水平面 内二方向連成モデルの塑性歪エネルギー推定法,日本建築学会構造 系論文集,第693号,pp.1869-1877,2013.11